Category Archives: Swift

Dependency injection

In software engineering, dependency injection is a technique in which an object receives other objects that it depends on. These other objects are called dependencies. In the typical “using” relationship the receiving object is called a client and the passed (that is, “injected“) object is called a service.

The code that passes the service to the client can be many kinds of things and is called the injector. Instead of the client specifying which service it will use, the injector tells the client what service to use. The “injection” refers to the passing of a dependency (a service) into the object (a client) that would use it.

Continue reading Dependency injection

SOLID PROGRAMMING – LISKOV SUBSTITUTION PRINCIPLE

Substitutability is a principle in object-oriented programming stating that, in a computer program, if S is a subtype of T, then objects of type T may be replaced with objects of type S (i.e. an object of type T may be substituted with any object of a subtype S) without altering any of the desirable properties of the program (correctness, task performed, etc.). More formally, the Liskov substitution principle (LSP) is a particular definition of a subtyping relation, called (strongbehavioral subtyping, that was initially introduced by Barbara Liskov in a 1987.

The Liskov Substitution Principle is the third of Robert C. Martin’s SOLID design principles. It extends the Open/Closed principle and enables you to replace objects of a parent class with objects of a subclass without breaking the application. This requires all subclasses to behave in the same way as the parent class.

Therefore:

Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it.” – Robert C. Martin

A violation of this behaviour would imply your code is not SOLID and it may be prone to malfunctioning.

What’s new in Swift 5.0

A new version of the Swift programming language is coming: Swift 5.0. It’s slated to be released early 2019, with a fair number of changes. How does this Swift update affect practical iOS development? And who’s making these changes anyway?

In this article, we’ll walk through some of the proposed and accepted changes for Swift 5.0. We’ll also discuss how the process of making changes to the Swift language works, and why that’s relevant for iOS developers.

Version 5 of Apple’s Swift language used for iOS and MacOS application development will arrive in 2019 with ABI (application binary interface) stability in the standard Swift library a primary focus.

ABI stability is half of what is needed to support binary frameworks. The other half, module stability, will be a “stretch goal” for Swift 5 and may not make it into the release, Apple’s roadmap notes.

Continue reading What’s new in Swift 5.0

iPhone Device & Screen Sizes and Resolutions +Xr

To get the screen dimensions (in points) of the current device:

Objective-C: 
CGRect screenBounds = [[UIScreen mainScreen] bounds]; 
// Macros: 
#define screen_width [ [ UIScreen mainScreen ] bounds ].size.width #define screen_height [ [ UIScreen mainScreen ] bounds ].size.height 
Swift: 
let screenBounds = UIScreen.main.bounds 
let screen_width = screenBounds.width 
let screen_height = screenBounds.height 

To get the screen scale:

Objective-C: 
CGFloat screenScale = [[UIScreen mainScreen] scale]; Swift: let screenScale = UIScreen.main.scale

Non-retina devices have a scale of 1.0. Retina devices have a scale of 2.0 or 3.0.

Some dimensions common to all screen sizes:

Status Bar
20 pts
Navigation Bar44 pts
Nav Bar/Toolbar Icon20 x 20 pts (transparent PNG)
Tab Bar49 pts
Tab Bar Icon30 x 30 pts (transparent PNGs)

Points vs. Pixels

Apple introduced retina displays starting with the iPhone 4. You don’t have to modify your code to support high-res displays; the iOS coordinate system uses points rather than pixels, so the dimensions and position in points of all UI elements remains the same across all devices.

iOS supports high resolution displays via the scale property on UIScreen, UIView, UIImage, and CALayer classes. If you load an image from a file whose name includes the @2x modifier, its scale property is set to 2.0. Similarly an image with a @3x modifier has a scale of 3.0. Otherwise the scale defaults to 1.0.

Retina Graphics

To support high-resolution graphics on devices with retina displays, you need @2x and @3x sized images:

@1x:
button.png
60 x 20
@2x:
button@2x.png
120 x 40
@3x:
button@3x.png
180 x 60

To refer to an image in your code (or in Interface Builder), just use the filename of the standard sized image. iOS will automatically detect and use the @2x or @3x version if the device supports it:

Objective-C: 
<br>imageView.image = [UIImage imageNamed: @"button.png"]; Swift: imageView.image = UIImage(named: @"button.png") 

How to use Swift classes all across an Objective-C project

The most universal solution is to change SWIFT_OBJC_INTERFACE_HEADER_NAME (“Objective-C Generated Interface Header Name”) under Project’s, not Targets, Build Settings, to:

  • $(PROJECT_NAME)-Swift.h — one per project;
  • $(SWIFT_MODULE_NAME)-Swift.h — one per module (default value).

Then import the Project Header, example:

#import MyProjectName-Swift.h

How to debug deep linking in iOS

What is deep linking?

Deep linking basically enables you to open an app from another app or a website while passing on parameters. This mechanism works with custom URL schemes which you can define in the .plist of your app.

Why deep linking?

If you have an app with lookup functionality (e.g. an app for finding song lyrics) you might want to perform a lookup without having to navigate to the designated screen and typing in the query. This can be achieved by opening the following example URL MyAppScheme://myAction=lookup&myQuery=What%20is%20the%20meaning%20of%20life in another app of the browser. In this case the app is programmed to read the ‘myAction’-parameter on startup to determine the action and the ‘myQuery’-parameter for the search query. Often, deep linking doesn’t go as planned and you might need to debug your app.

Why is debugging this difficult?

Deep linking might occur in three kinds of scenarios:

  1. The app hasn’t been installed yet
  2. The app is running in the background (or foreground for that matters)
  3. The app is installed but not running at all

Scenario 1 is irrelevant in this case, so we’ll skip this one. Scenario 2 should be no problem since the app is running on the device (or simulator) while in a debug session. Scenario 3 requires you not to have the app running, but you need the debug session to be able to debug. This is a problem because Xcode starts the app automatically when starting a debug session. Instead of letting Xcode start the app, you want to do it yourself using the deep link URL.

So… tell me how to do this

There is a convenient option which enables you to start a debug session by manually starting the app. To achieve this, go to the ‘Edit scheme’ screen and tick the ‘Wait for MyApp.app to be launched manually’ option on in the ‘Run’ configuration.

Image

Whenever you run the target in Xcode, the app doesn’t automatically starts and the debug session will only start when you manually start the app.